Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Res ; 243: 1-13, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740874

RESUMO

Loss of functional pancreatic ß-cell mass and increased ß-cell apoptosis are fundamental to the pathophysiology of type 1 and type 2 diabetes. Pancreatic islet transplantation has the potential to cure type 1 diabetes but is often ineffective due to the death of the islet graft within the first few years after transplant. Therapeutic strategies to directly target pancreatic ß-cell survival are needed to prevent and treat diabetes and to improve islet transplant outcomes. Reducing ß-cell apoptosis is also a therapeutic strategy for type 2 diabetes. Cholecystokinin (CCK) is a peptide hormone typically produced in the gut after food intake, with positive effects on obesity and glucose metabolism in mouse models and human subjects. We have previously shown that pancreatic islets also produce CCK. The production of CCK within the islet promotes ß-cell survival in rodent models of diabetes and aging. We demonstrate a direct effect of CCK to reduce cytokine-mediated apoptosis in a ß-cell line and in isolated mouse islets in a receptor-dependent manner. However, whether CCK can protect human ß-cells was previously unknown. Here, we report that CCK can also reduce cytokine-mediated apoptosis in isolated human islets and CCK treatment in vivo decreases ß-cell apoptosis in human islets transplanted into the kidney capsule of diabetic NOD/SCID mice. Collectively, these data identify CCK as a novel therapy that can directly promote ß-cell survival in human islets and has therapeutic potential to preserve ß-cell mass in diabetes and as an adjunct therapy after transplant.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Animais , Apoptose , Colecistocinina/metabolismo , Colecistocinina/farmacologia , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
2.
Sci Rep ; 10(1): 2823, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071395

RESUMO

Glucagon-like peptide 1 (GLP-1) and cholecystokinin (CCK) are gut-derived peptide hormones known to play important roles in the regulation of gastrointestinal motility and secretion, appetite, and food intake. We have previously demonstrated that both GLP-1 and CCK are produced in the endocrine pancreas of obese mice. Interestingly, while GLP-1 is well known to stimulate insulin secretion by the pancreatic ß-cells, direct evidence of CCK promoting insulin release in human islets remains to be determined. Here, we tested whether islet-derived GLP-1 or CCK is necessary for the full stimulation of insulin secretion. We confirm that mouse pancreatic islets secrete GLP-1 and CCK, but only GLP-1 acts locally within the islet to promote insulin release ex vivo. GLP-1 is exclusively produced in approximately 50% of α-cells in lean mouse islets and 70% of α-cells in human islets, suggesting a paracrine α to ß-cell signaling through the ß-cell GLP-1 receptor. Additionally, we provide evidence that islet CCK expression is regulated by glucose, but its receptor signaling is not required during glucose-stimulated insulin secretion (GSIS). We also see no increase in GSIS in response to CCK peptides. Importantly, all these findings were confirmed in islets from non-diabetic human donors. In summary, our data suggest no direct role for CCK in stimulating insulin secretion and highlight the critical role of intra-islet GLP-1 signaling in the regulation of human ß-cell function.


Assuntos
Colecistocinina/fisiologia , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Secreção de Insulina , Células Secretoras de Insulina/citologia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Diabetes ; 66(6): 1572-1585, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28193789

RESUMO

Prostaglandin E2 (PGE2) is derived from arachidonic acid, whereas PGE3 is derived from eicosapentaenoic acid (EPA) using the same downstream metabolic enzymes. Little is known about the impact of EPA and PGE3 on ß-cell function, particularly in the diabetic state. In this work, we determined that PGE3 elicits a 10-fold weaker reduction in glucose-stimulated insulin secretion through the EP3 receptor as compared with PGE2 We tested the hypothesis that enriching pancreatic islet cell membranes with EPA, thereby reducing arachidonic acid abundance, would positively impact ß-cell function in the diabetic state. EPA-enriched islets isolated from diabetic BTBR Leptinob/ob mice produced significantly less PGE2 and more PGE3 than controls, correlating with improved glucose-stimulated insulin secretion. NAD(P)H fluorescence lifetime imaging showed that EPA acts downstream and independently of mitochondrial function. EPA treatment also reduced islet interleukin-1ß expression, a proinflammatory cytokine known to stimulate prostaglandin production and EP3 expression. Finally, EPA feeding improved glucose tolerance and ß-cell function in a mouse model of diabetes that incorporates a strong immune phenotype: the NOD mouse. In sum, increasing pancreatic islet EPA abundance improves diabetic ß-cell function through both direct and indirect mechanisms that converge on reduced EP3 signaling.


Assuntos
Alprostadil/análogos & derivados , Diabetes Mellitus/metabolismo , Dinoprostona/metabolismo , Ácido Eicosapentaenoico/farmacologia , Glucose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Receptores de Prostaglandina E Subtipo EP3/efeitos dos fármacos , Alprostadil/metabolismo , Animais , Ácido Araquidônico/metabolismo , Cromatografia Gasosa , Perfilação da Expressão Gênica , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos NOD , Camundongos Obesos , Imagem Óptica , Fosfolipídeos , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Transdução de Sinais
4.
Am J Physiol Endocrinol Metab ; 309(10): E819-28, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26394663

RESUMO

Cholecystokinin (CCK) is a peptide hormone produced in the gut and brain with beneficial effects on digestion, satiety, and insulin secretion. CCK is also expressed in pancreatic ß-cells, but only in models of obesity and insulin resistance. Whole body deletion of CCK in obese mice leads to reduced ß-cell mass expansion and increased apoptosis. We hypothesized that islet-derived CCK is important in protection from ß-cell apoptosis. To determine the specific role of ß-cell-derived CCK in ß-cell mass dynamics, we generated a transgenic mouse that expresses CCK in the ß-cell in the lean state (MIP-CCK). Although this transgene contains the human growth hormone minigene, we saw no expression of human growth hormone protein in transgenic islets. We examined the ability of MIP-CCK mice to maintain ß-cell mass when subjected to apoptotic stress, with advanced age, and after streptozotocin treatment. Aged MIP-CCK mice have increased ß-cell area. MIP-CCK mice are resistant to streptozotocin-induced diabetes and exhibit reduced ß-cell apoptosis. Directed CCK overexpression in cultured ß-cells also protects from cytokine-induced apoptosis. We have identified an important new paracrine/autocrine effect of CCK in protection of ß-cells from apoptotic stress. Understanding the role of ß-cell CCK adds to the emerging knowledge of classic gut peptides in intraislet signaling. CCK receptor agonists are being investigated as therapeutics for obesity and diabetes. While these agonists clearly have beneficial effects on body weight and insulin sensitivity in peripheral tissues, they may also directly protect ß-cells from apoptosis.


Assuntos
Envelhecimento , Apoptose , Colecistocinina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Regulação para Baixo , Células Secretoras de Insulina/metabolismo , Estresse Fisiológico , Animais , Linhagem Celular , Colecistocinina/genética , Citocinas/efeitos adversos , Citocinas/genética , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/prevenção & controle , Hiperglicemia/sangue , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Hiperglicemia/prevenção & controle , Insulina/genética , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/patologia , Masculino , Camundongos Transgênicos , Regiões Promotoras Genéticas , Ratos , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/metabolismo , Estreptozocina , Técnicas de Cultura de Tecidos
5.
Am J Physiol Regul Integr Comp Physiol ; 309(7): R788-94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26202070

RESUMO

Transgenic mouse models are designed to study the role of specific proteins. To increase transgene expression the human growth hormone (hGH) minigene, including introns, has been included in many transgenic constructs. Until recently, it was thought that the hGH gene was not spliced, transcribed, and translated to produce functional hGH protein. We generated a transgenic mouse with the transcription factor Forkhead box M1 (FoxM1) followed by the hGH minigene, under control of the mouse insulin promoter (MIP) to target expression specifically in the pancreatic ß-cell. Expression of FoxM1 in isolated pancreatic islets in vitro stimulates ß-cell proliferation. We aimed to investigate the effect of FoxM1 on ß-cell mass in a mouse model for diabetes mellitus. However, we found inadvertent coexpression of hGH protein from a spliced, bicistronic mRNA. MIP-FoxM1-hGH mice had lower blood glucose and higher pancreatic insulin content, due to increased ß-cell proliferation. hGH signals through the murine prolactin receptor, and expression of its downstream targets tryptophan hydroxylase-1 (Tph1), tryptophan hydroxylase-2 (Tph2), and cytokine-inducible SH2 containing protein (Cish) was increased. Conversely, transcriptional targets of FoxM1 were not upregulated. Our data suggest that the phenotype of MIP-FoxM1-hGH mice is due primarily to hGH activity and that the FoxM1 protein remains largely inactive. Over the past decades, multiple transgenic mouse strains were generated that make use of the hGH minigene to increase transgene expression. Our work suggests that each will need to be carefully screened for inadvertent hGH production and critically evaluated for the use of proper controls.


Assuntos
Hormônio do Crescimento Humano/genética , Células Secretoras de Insulina/fisiologia , Transgenes/genética , Animais , Antimetabólitos , Glicemia/metabolismo , Bromodesoxiuridina , Proliferação de Células , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/genética , Glucose/farmacologia , Transportador de Glucose Tipo 2/biossíntese , Transportador de Glucose Tipo 2/genética , Humanos , Insulina/metabolismo , Camundongos , Camundongos Transgênicos , Fenótipo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
6.
Am J Physiol Gastrointest Liver Physiol ; 309(6): G431-42, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26185331

RESUMO

Stimulation of digestive organs by enteric peptides is lost during total parental nutrition (PN). Here we examine the role of the enteric peptide bombesin (BBS) in stimulation of the exocrine and endocrine pancreas during PN. BBS protects against exocrine pancreas atrophy and dysfunction caused by PN. BBS also augments circulating insulin levels, suggesting an endocrine pancreas phenotype. While no significant changes in gross endocrine pancreas morphology were observed, pancreatic islets isolated from BBS-treated PN mice showed a significantly enhanced insulin secretion response to the glucagon-like peptide-1 (GLP-1) agonist exendin-4, correlating with enhanced GLP-1 receptor expression. BBS itself had no effect on islet function, as reflected in low expression of BBS receptors in islet samples. Intestinal BBS receptor expression was enhanced in PN with BBS, and circulating active GLP-1 levels were significantly enhanced in BBS-treated PN mice. We hypothesized that BBS preserved islet function indirectly, through the enteroendocrine cell-pancreas axis. We confirmed the ability of BBS to directly stimulate intestinal enteroid cells to express the GLP-1 precursor preproglucagon. In conclusion, BBS preserves the exocrine and endocrine pancreas functions during PN; however, the endocrine stimulation is likely indirect, through the enteroendocrine cell-pancreas axis.


Assuntos
Bombesina/farmacologia , Peptídeo Liberador de Gastrina/análogos & derivados , Ilhotas Pancreáticas/efeitos dos fármacos , Pâncreas Exócrino/efeitos dos fármacos , Nutrição Parenteral/efeitos adversos , Amilases/metabolismo , Animais , DNA/metabolismo , Alimentos Formulados , Regulação da Expressão Gênica , Hiperglicemia/sangue , Ilhotas Pancreáticas/anatomia & histologia , Lipase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Pâncreas Exócrino/anatomia & histologia , Hormônios Pancreáticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...